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Finlines in Rectangular and Circular Waveguide
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Abstract —The finite element method is applied for deriving the disper-
sion characteristics and field components of dominant and higher order
modes in finlines. The ‘method is accurate and covers the metallization
thickness, substrate mounting grooves, bending of the substrate, and
arbitrary cross sections. Results for structures already obtained with other
methods have been found to agree well with available data. As a new
contribution, the effect of substrate bending on the propagation constant is
studied. Also, the dispersion characteristics for the dominant and higher
order modes for bilateral finlines in circular waveguide housing are calcu-
lated for the first time. The field plots for all the modes are also given.

I. INTRODUCTION

INLINES are of increasing importance for milli-
meter-wave integrated circuits because of their wide
bandwidth for single-mode operation, low dispersion in
the frequency range of interest, moderate attenuation, and
compatibility with solid-state devices. Various methods
have been applied to calculate the cutoff frequencies, dis-
persion characteristics, and characteristic’ impedances of
finlines in rectangular waveguide enclosures [1]-[5]. Only
two papers [6], [7] have so far been published which deal
with the computation of finline losses. However, the re-
sults of these papers disagree by as much as 100 percent.
Most of these methods can only handle structures of
regular cross-sectional geometry. '
The purpose of this study was to develop a very general
finite element method of analysis which can handle arbi-
trary cross-sectional geometries, including mounting ef-
fects, imperfections such as the bending of the substrate
(which can occur due to improper mounting of soft sub-
strate), and the cross-sectional profile of the metallization
edges. The last effect is of particular importance in the
computation of losses and power-handling capacities. In
addition, the finite element analysis allows the study of
previously neglected configurations such as finlines in cir-
cular waveguide enclosures. It is interesting to note that a
similar structure was first proposed by Robertson [15]
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under the name of finline. The paper presents the disper-
sion characteristics of the fundamental and higher order
modes of such a structure.

II. THEORY

The finite element method is based on a variational
principle. Several vectorial variational formulations have
been proposed. These can be classified into the following
four types:

1) variational expressions which are formulated in terms
of the longltudmal components of the electric field
(E,) and the magnetic field (H,) [8];

it) variational expressions employing all three compo-
nents of the electric field [9];

iii) variational expressions employing all three compo-
nents of the magnetic field [10], [11];

iv) variational expressions employing the transverse
electric and magnetic field components [12].

The first type of variational formulation is chosen for our
purpose because of its simplicity and the small matrix size
of the eigenvalue problem.

Consider a waveguide of arbitrary shape uniform in the
z direction which consists of isotropic, lossless dielectric
media. Assume that the cross section can be divided into
several subregions over which the relative permittivity is
constant. Further, assume propagation along the z axis of
the form exp[j(wt — Bz)] with longitudinal field compo-
nents H, and E,. In a typical subregion (say thé pth), E,
and H, satisfy the Helmholtz equations:

E(p)
H(p)

where v? is the transverse Laplacian operator, and K is
given by

(v2+K2) )

= (w/c)(e,/e0) — (2)
with €

» as the dielectric permitlivity. Continuity of the
tangential electric and magnetic fields along the common
interface between two contiguous regions (say the pth and
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gth) requires that

EP = E@
HZ(P)z HWD
€\ IEP  JHP
|7 o ds an
€ \V2OED  GHW
~ T Y(u—o) ds  dn
€, [ € 1/28EZU’)+8HZ(1’)
K €Y \ Lo dn ds
B i fﬂ 172 3E;(q) . 3Hz(q)
=1, + (3)
€oY \ Bo dn ds

where s and » refer to the tangential and normal direc-
tions, respectively, with n X s = e, defining the unit nor-
mal along the z direction. The quantities 7, and y are
given by

n=(v"=1)/(v*—¢,/¢,)

= (Be)/w. (4)
The variational principle
8I=0 (%)
where
I= 31,
p=1

2
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Ho

} dxdy (6)

yields as its Euler equations and natural boundary condi-
tions the governing equations (1) and continuity conditions
(3) for all regions constituting the waveguide cross section.

III. DiISCRETIZATION

The bases for generating the finite element algorithm are
equation (5) with the functional (6). The initial step is the
discretization of the waveguide cross section into a large
number of subregions or elements in an arbitrary manner,
provided that all the dielectric interfaces coincide with the
element sides. Although a variety of different elements can
be chosen, the triangular [13], ]14] second-order elements
are adopted in this study. The values of E, and H,_ at the
element vertices or nodes will be considered as the primary
dependent variables of the problem. In a triangle, the E,

and H. fields are approximated by a linear combination of
a complete set of interpolation polynomials {a,, i

1,2,3,---, n}, each of degree N:
Z z1 1(§1’§27§3)
H:= Z szal(§1’§27§3) (7)
=1
where
(N+1)(N+2)
-

The coefficients E,, and H,, represent the values of E.
and H,, respectively, at the interpolation nodes; {;, ,, and
{; are triangle coordinates. After substituting the above
expressions for E, and H, into (6), I, can be written in
matrix form as

I,= [ap] T[Ap] [ap] - F[ﬂp] T[BP] [01,]

where T is the eigenvalue parameter defined by
w2

T=(;) (1-v%) ©)

and [6,] is the assembled array of nodal E, and H, values,
given by

(®)

[ p] E zl» Ez Ezn’ z1s H zn]' (10)
The matrices [4,] and [ B,] are given by
€
£y 29U
[4,] =1,| € (11)
-2yU S
€
P2
—yT 0
[B,] =] € ) (12)
0 T

Matrices S, T, and U are square matrices of order n, the
first two being derived in [13] and the last one in [14]. All
three matrices are independent of the properties of the
medium. These base matrices are successively applied to
the total number of triangles of a given structure to obtain
the final matrices. Thus summing the contributions I, of
all the triangles yields the following equation for I:

I=[6]7[4][6]-T[6]"[B][6] (13)

where [0] is an ordered array of the longitudinal electro-
magnetic nodal variables, [ 4] is a large sparse indefinite
symmetric matrix, and [B] is a large sparse positive-defi-
nite symmetric matrix. Variation of (13) with respect to the
nodal variables leads to the following algebraic eigenvalue
problem:

[4][6]=T[B][6]. (14)

The parameter y is present in the matrices [A4] and [B].
For a given value of vy, the above generalized eigenvalue
equation is solved for the frequency and the longitudinal
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electromagnetic nodal variables. All transverse field com-
ponents can be derived from the longitudinal field values
by the equations

T
E0 = Jjeu, aHZ(P) +(_€_Q)1/2,Y aEz(p)
x K} | dy Eo ax
s et ZOH? (g)my OB
Y K| dx Po dy
H(p)=jw€° & JED (ko 1/2}’ dHP
* K} € 0y € dx
H = Jweg —e_P AEP [ 2 gH® s
Yo K2 e dx € oy | (15)
p LFO 0 Y

It is possible to use the symmetry conditions to reduce the
number of elements by imposing the following boundary
conditions on the axes:

E_= 0 at the nodes on the electric wall;
H, = 0 at the nodes on the magnetic wall.

The propagation constant vy, which is a variational quan-
tity, is obtained much more accurately than the associated
field solution. Therefore, good accuracy of the loss and
impedance calculations demands a larger number of ele-
ments than would be required for obtaining only y with
similar accuracy. Equation (14) usually has a number of
spurious solutions, especially for y >1. These solutions do
not correspond to a physical mode of propagation and can
be eliminated by inspection of their field plots and sec-
ondary parameters such as transmitted power and attenua-
tion constants, which differ by orders of magnitude from
those obtained for regular solutions.

IV. CoNDUCTOR AND DIELECTRIC LOSSES

The perturbational approach is employed to solve for
the attenuation constants due to dielectric and conductor
losses:

P, P, ‘ g
2P, %~ 2P (16)

ad=

where P,, is the time-averaged power flow along the line,
and P, and P, are the time-averaged powers dissipated in
the dielectric and conductors, respectively.

Dicelectric losses are calculated using the formula

|Ey)* ds (17)

P,=we tanS/fS
‘ diel

where the loss tangent tané is assumed to be very small so
that the perturbed fields can be approximated by the fields
for the lossless condition E;, H,; Sy is the area of the
cross section covered by the dielectric; and w = 2#f is the
angular frequency.
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For any generalized structure, (17) can be expressed in
matrix form as follows:

NOTRD

B=e ¥ ¢, tand,([61:] [T 1[61:] + (6] [T1[6:5]

1 T 1
6] [T1[03]) (18)
where NOTRD is the number of elements in the dielectric
region, the matrix T is as mentioned in the Section III,
and [0],], [0;z], and [8;;] are the electric field values at
the nodes of triangle i:

[612]" = [Ed. Eipoo - EL)
021E] [ yl’El” " ll)n]

[06]" = [EL. B, EL. (19)
Thus by knowing the electric nodal variables, the dielectric
loss P, can be computed.
The time-averaged power flow along the z direction can
be written as

=//;Re(]5'_;><ﬁo*)'ﬁzds (20)

where S is the complete cross section. In terms of the
transverse field components it is written as

= ffSRe(Ex (21)

Using (15) and (7) and matrix equivalents of the various
integrals given in [10], the above equation can be written in
matrix form as follows:

;4 [{(e +v2) 014 " 1Z1[63]

+\/'%(EY[H;H]T[D][G;H]+517‘/_::*—(::[031E]T[E][031E]}

Hr - Eny*) dxdy.

NOTR

Pav= wzp'O E

_{(€,+Y2)[031E]T[Z][031H]_\/“:j;)‘Y[o’;H]T E][031H]
—el\/;i‘;vlﬂsE]T[D][H;E]}} (22)
where

[03115] [E~1~E~lzs' L E; ]

[031H] [ 2 H, . Hzln] . (23)

The matrices [Z], [D], and [E ] are the same as the ones
given in [10], and NOTR is the total number of elements.
Thus by knowing the longitudinal field values, the time-
averaged power flow can be computed.

The perturbational formula for calculating the conduc-
tor loss of a transmission line with a high-conductivity
conductor is given by

Po= R, [ |Holiug i (24)
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Fig. 1. Dispersion characteristics of a bilateral finline in rectangular
waveguide housing (WR28). ¢, =3.0, h=0125 mm, w=05 mm.

HEI1 and HE7 modes for t=0and g=0; - - - - - HE1 and
HE7 modes for =35 pm and g=0; ---- HE2 mode for =0 and
g =0;—+—HE2 mode for t =0 and g=0.5 mm.

where R, is the surface resistance and Iﬁolta_ng is the
magnitude of the tangential magnetic field at the conduct-
ing surfaces for the lossless case. Closed-form expressions
have been derived to calculate the conductor loss (of the
conducting surfaces lying on the x or the y axis) for
second-order triangular elements. They are too lengthy to
be given here. No numerical differentiation or integration
is involved in the computation of losses.

V. APPLICATION TO FINLINE STRUCTURES

On the basis of this finite element procedure, a com-
puter program has been developed. With this program we
have unprecedented flexibility since we can evaluate struc-
tures with arbitrary cross-sectional geometry. A very large
number of elements are taken around the fin edges to
account for the singularities. A CRAY X-MP /22 super-
computer has been used for computation.

A. Bilaterql Finlines in Rectangular Waveguide Housing

In order to test the program, we have recalculated the
characteristics of some standard finline structures, know-
ing well that for these cases other methods are more
efficient. The dispersion characteristics of the dominant
and higher order modes in a bilateral finline are shown in
Fig. 1. The results for zero metallization thickness are in
good agreement with data published by Schmidt [1] com-
puted with the spectral-domain technique. For a metalliza-
tion thickness #=35 pum, the cutoff frequency of the
dominant mode is slightly reduced because of increased
capacitive loading of the guide. However, as the frequency
increases, the crossover of the dispersion curves takes
place. This may be atiributed to the parallel-plate phe-
nomenon because of the confinement of energy into the
slot region. The dispersion characteristics of the higher
mode remain unchanged. These results for finite metalliza-
tion thickness conform to those given in [4]. The influence
of the groove depth g on the propagation constant was
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TABLE I
LosSES IN HOMOGENEOUSLY FILLED WAVEGUIDE

Finite Element Method Results Analytical Results
Frequency | Conductor [Dielectric |Conductor [Dielectric
(GHz2) Loss (dB) | Loss(dB) | Loss(dB) | Loss(dB)

20 000 0528 0 549 0530 0 550

25 000 0425 0 567 0 427 0 568

28.474 0 402 0 608 0 403 0 609

38 273 0 389 0 755 0389 0.756

a=10 mm, =5 mm, tand =2x107%, p=3%10"% Q-m, ¢, =1.0.

TABLE II
MEASURED LOSSES FOR BILATERAL FINLINES IN WR28 WAVE-
GUIDE ENCLOSURES

Substrate Thickness| Cu Metal- Loss (dB/cm)

(microns) lization

m (microns) | 27 6Hz | 33 5 6Hz| doGHz
Duro1d 5880 127 17 006 006 006
Duroid 5880 254 17 007 007 013
Mylar 100 5 008 010 013
Kapton 75 34 0.13 0.14 020
Kapton 150 34 0.24 034 036

w=0.4 mm [16].

also studied. It was found that the effect is negligible for
the fundamental mode and the higher order mode HE7
(which are excited by a TE;;, mode of the empty wave-
guide) as reported in [3] and [5]. However, the propagation
characteristics of the second higher order mode HE2 are
strongly affected. This behavior is illustrated in Fig. 1. The
sensitivity of the second mode may be due to the fact that
the fields for this mode are not concentrated around the
fin edges and are rather confined between the two metal
fins as in a parallel-plate capacitor. Hence the cutoff
frequency for this mode is reduced with increasing groove
depth.

In order to test the program for loss calculations, the
conductor and dielectric losses of a homogeneously filled
rectangular waveguide (WR28) have been computed at
various frequencies. The dielectric had an ¢, of unity and a
loss tangent of 2X107%. The resistivity of the walls was
3x1078 Q-m. Results are summarized in Table 1. The
results agree very well with the analytical values, thus
supporting the accuracy of the presented numerical algo-
rithm. The conductor and dielectric losses of a bilateral
finline in rectangular waveguide enclosure (WR28) are
given in Fig. 2(a). It is seen that as the gap width is
reduced, the conductor loss increases exponentially. This
can be explained by the fact that with small gap widths
there is heavy concentration of fields near the gap. The
dielectric losses are very small when compared to the
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Fig. 2. Loss characteristics of a bilateral finline in rectangular wave-
guide housing (WR28). 5 =0.254 mm, ¢, = 2.22, tand =2X107%, p =
3x10™% ©-m. (a) Conductor and dielectric losses as a function of gap
width (w). (b) Conductor loss per wavelength as a function of fre-
quency. -

conductor losses. The conductor loss per wavelength for
various gap widths is plotted in Fig. 2(b) as a function of
frequency. It appears that the losses obtained are between
those of Mirshekar and Davies [6] and Olley and Rozzi [7]

(assuming that the losses for bilateral and unilateral fin--
lines are almost equal [6]). Independent measurement re- .

sults are difficult to obtain. Bates and Coleman [16] have
reported measured losses for bilateral finlines with slot
widths of 400 pm. They are given in Table II. These
measured losses are higher than our computed results.
When we increased the elements around the fin edges (to
account for the singularities), our results changed only by
about 2 percent. Since in practice the measured losses are
always higher than those predicted by theory because of
such factors as surface roughness, irregularities in the
structure, and anomalous skin effect, we believe that the
theoretical losses we obtained are accurate.

Having tested our program by analyzing some well-
known structures, we have applied it to compute certain
novel structures.

11
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Fig. 3. Dispersion characteristics of a bilateral finline in rectangular
waveguide (WR28) enclosure with bent substrate for different values of
deflection d. €, = 3.0, h = 0125 mm, w=0.5 mm.
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Fig. 4. Dispersion characteristics of a bilateral finline in circular wave-
guide housing (WC33). ¢ =4.165 mm, A =0254 mm, w=03 mm,
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wall at x =a /2, electric wall at y =b/2;— - —magnetic wall at x =
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B. Effect of Substrate Bending

Bending of the substrate can occur when soft materials
are used (mounting grooves too narrow result in displace-
ment of dielectric material, producing bending). The prop-
agation characteristics computed with bent substrate for
deflections d of 0.125 mm and 0.25 mm are compared with
those of the straight substrate in Fig. 3. It is found that the
change in the propagation constant is negligible near cut-
off and is slightly higher in the operating frequency band
of the waveguide enclosure. This is attributed to the in-.
creased volume of dielectric material (due to bending) in
the structure and the progressive confinement of energy in
the dielectric as frequency increases.

C. Bilateral Finlines in Circular Waveguide Housing

It is interesting to note that an ultra-bandwidth finline
coupler in circular waveguide housing was reported as
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early as 1955 [15]. No theoretical analysis of such a struc-
ture has ever been published, probably due to the complex-
ity of the problem. The advantages of such structures are
easy fabrication and compatibility of the dominant mode
with the TE;; mode of the circular waveguide.

The dispersion characteristics for the fundamental mode
and six higher order modes are given in Fig. 4. All the
results are obtained by analyzing only one quarter of the
structure with four combinations of electric and magnetic
walls. The HE, and HE, modes (solid lines), which are
excited by a TE,; wave incident on the empty circular
waveguide, will define the actually relevant monomode
range. The electric field plots for the various modes are
shown in Fig. 5. A thorough study of dispersion character-,
istics (over a wide range of finline parameters) and loss
_characteristics is in progress.

VL

In this paper, a finite element procedure for the analysis
of generalized finlines is presented. The method is capable
of handling shielded microwave and millimeter-wave
transmission lines with arbitrary cross-sectional geome-
tries. The ‘method can also include finite metallization
thickness, substrate mounting grooves, bending of the sub-
strate, and even the cross-sectional profile of the metalliza-
tion edges.

Results obtained for the dispersion characteristics for
bilateral finlines in rectangular waveguide enclosure agree
to within less than 1 percent with data computed by
Schmidt [1] using the spectral-domain technique. Bending
of the substrate causes a slight increase in the propagation
constant of the dominant finline mode.

For the first time, the dispersion characteristics of bilat-
eral finlines in circular waveguide enclosures are presented.
Further studies are being conducted to compare such
characteristics as monomode bandwidth, attenuation con-
stant, and impedance range to those of the finlines in
rectangular waveguide enclosure.

It may be noted that the finite element algorithm re-
quires one to two orders of magnitude more CPU time and
memory than a spectral-domain program for an idealized
planar structure in a rectangular enclosure. However, the
finite element approach develops its full potential when
second-order effects and irregular geometries must be eval-
uated, a task at which most other numerical techniques
fail. !

CONCLUSION
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